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ABSTRACT

The paper makes an attempt to visualize one of the ho-
mogeneous geometries, the Sol geometry, by illustrating
first the geodesic curves and spheres then the so-called

Vizualizacije krivulja i ploha u Sol geometriji
SAZETAK

Ovaj clanak je pokusaj vizualizacije jedne od homogenih
geometrija, Sol geometrije. Prvo se ilustriraju geodetske
krivulje i sfere, a zatim i tzv. translatirajuée krivulje i sfere.
Takoder su navedena njihova osnovna svojstva.

translation curves and spheres. We've collected their ba-

X ) Kljucne rijeci: vizualizacija Thurstonovih geometrija
sic properties, too.
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“This (the Sol geometry)is the real weird. Unlike the  The visualization of the three possible two-dimensional
previous geometries, solve geometry isn’t even rotatignal homogeneous Riemann geometries H2, S is famil-
symmetric. | don’t know any good intrinsic way to under- iar to anyone, but in higher dimensions we face a lot of
stand it” (J. R. WEEKS) [7] open questions. Even in three dimensions, where first time
anisotropic cases also appear we have difficulties in the
imagination. No doubt, the standard models workEdy

H3, S°, moreover real-time interactive graphics algorithms
have been developed by J. R. WEEKS that can be extended
In [5] W. P. Thurston formulated a geometrization conjec- even more for the product spac®sx R, H2 x R[8]. The

ture for three-manifolds which states that every compactremaining three Thurston‘s homogeneous 3-dimensional

orientable three-manifold has a canonical decomposition . . -
into pieces, each of which admits a canonical geometric geometriesSL(2, R), Nil andSol, howeve/rirs difficult to

structure from among the 8 maximal simply connected ho- handle. From these the twisted spa&i$2,R) and Nil
mogeneous Riemannian 3-geometfigs H3, 3, ¥ x R, need multiple imaging and there are just a few results about
2 . : . . them, whilest theSol (mentioned also asolvin the litera-

H® xR, SL(2,R), Nil andSol. Obviously, the Poincaré  yre) is the most unusual as our motto above indicates, as
conjecture (a_compact three-manlfold w[th trivial funda- el (for more information consult [5], [6], [4]). We note
mental groupis necessarily homeomor_ph|cto the 3-sphereynat in the paper [2] Emil MOLNAR elaborated the projec-

is a special case of the Thurston conjecture. In the pastijye interpretations of all the eight geometries, we ontg ci
thirty years, many mathematicians have contributed to the his model forSol.

understanding of this problem, maybe the most important ; -

attempts are due to R. Hamilton. In 2006 a scoop went ??Lgsgzgg%ﬁgs:ci Orb()tg'l:];i %% ggnfgﬂo?,vgrow structure
round the world claiming that a Russian mathematician, P :
G. |. Perelman could give a complete proof of the Thurston
conjecture and so the Poincare conjecture, too. Followed

1 Introduction

1 x z
by the complex and knotty proof (using modern differential 0 ez g 0
geometry of Ricci flows) the interest has turned to homo- (1 a b ¢ 0o 0 & ol~
geneous spaces. This paper tries to help in understanding 0o 0o 0 1

one of the above geometries, tBel.

Let (M,g) be a Riemannian manifold. If for anyy € M
there does existan isome@®y: M — M such thay = ®(x),
then the Riemannian manifold is calladmogeneous

(1 x+ae? y+b& z+c)
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is the right action by a translatiqr, y, z) on an affine point The well-known equation of geodesics
(a,b,c) yielding also a point oBol expressed in homoge- - o
neous (projective) coordinates after choosing a fixedworigi d°U* | du du

0(1,0,0,0). dz " Udt dt

Then an invariant metric 080l(O, T) is given by containing the Christoffel symbols of second kind:
k _ 1991 | ag; _ 99\ ~lk

(dS)Z _ eZZ(dX)Z_’_efZZ(dy)Z_’_ (dZ)Z, r” =5 (a_ujr + O_UIJ— - ﬁ_ulj) g© turns [1] to

as infinitesimal arc length square, now in any point )f+2)f.Z:0
(1,%,,2) [5], [2]. y—2yz=0
z— & (X)* + e #(y)> =0.

2 Geodesicsand their representation Solving this differential equation system as a Cauchy prob-
lem
In the following we briefly recall from [1] the standard pro- .
cedure yielding the geodesics 96l x(0)=0 X_(O) =u
Consider first the fundamental (metric) tensor from the y(0)=0 and Y(O) =V
above mentioned equation Z(0)=0 2(0)=w
wHv+w? =1
e 0 0
(gj)=| 0 e2 0]. we could arrange the following table that contains our re-
0 0 1 sults:
1) x(t) = ufie#Vdr
u#£o0 y(t) = v [§ e Ddt
v#£0 z(t) comes from the separable differential equation
dz
O<w=v1-ue-v2<1 1_LJZ(TZZ_\IZeZZ:dt,forwzo
whose solution is non-elementary function.
2) u#£0 X(t) = ut
v#0 y(t) =vt
w=0 z(t)=0
sinht
&) v=0 X() = Y osit + wsinht
y(t)=0
O<|w=v1-uw<1 Z(t) = In (cosht +wsinht)
(4) u=0 x(t) =0
0 v sinht
v = cosht —wsinht
0O<|w=v1-v<1 Z(t) = —In(cosht —wsinht)
(5) u=0 X(t)=0
v=0 y(t)=0
|w| = Z(t) = £t, forw=+£1

Table 1: Table of geodesics in Sol geometry, depending on the inigikcity
parametergu,v,w), u> +v? +w? = 1.
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The forthcoming pictures try to visualize the most general
cases (1) and (3). As we easily see the chapuge w)

< (v,u,—w) leads to the isometry of the corresponding
geodesic curves.

Fig. 2: Geodesic curve starting in the [x,z] coordinate
plane with u= 0.9 in a general view in the param-
eter interval te [0, 2].

Clearly, the geodesic sphere unfortunatelly can not be ex-
pressed in a closed explicite form. We give approximations
by plotting the endpoints of many geodesic curves (of the
first type) with different initial unit velocities, acconulj to
geographic parameters

-

U= cosd cosp <o <™
] T
0,5 Vv = cos9 sin —— <9< =
o 2 — 2
w=sind .

o T

00,0,Q,3,8,6,6

Fig. 1:The approximate view of the most general geodesic 1, means, if is fixed andp varies, then the endpoints of
curve with initial velocity parameters & 0.9 and

v = 0.25in the parameter interval € [0,2]. The
first picture shows the curve in a general view, the
other from the direction of z-axis.

geodesics describe an altitude circle. Similarly we get lon
gitude half-circle for fixedp. The following figures show
our results.

Fig. 3: Geodesic sphere of radius 0.1. The first picture shows thersph a general view, then from the direction of axes
z, y and x, respectively.
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Fig. 5: Geodesic sphere of radius 2.

3 Tranglation curves and spheres

X(t) = 4 (e™-1)
A Riemannian manifold with a transitive group of isome- w
tries is called homogeneous. In a homogeneous space there y(t) = v (ewt _ 1) 7
are postulated isometries, mapping each pointto any point. w
Translations can be introduced in a natural way. Consider zZ(t) =wt ,

a unit vector at the origin. Translations, postulated at the
beginning carry this vector to any point by its tangent map-
ping. If a curvet — (X(t),y(t),z(t)) has just the translated
vector as tangent vector in each point, then the curve is
called atranslation curve This assumption leads to a sys-
tem of first order differential equations, thus translation
curves are simpler than geodesics and differ from them in
most cases (except in spaces of constant curvature).

In the following -as illustration- we show how a translation
curve looks like.

ofg 9, 10,20,30,40,50, 60,7

From [3] we have already known the solution of the above

defined system
X(t) =ue @ | \
/(1) =

(t)=w, Fig. 6: Translation curve with the same initial velocity pa-
rameters as for geodesics above £10.9 and v=
0.25) in the parameter interval € [0,2]. The first
of differential equation which holds for a curve starting at picture shows the curve in a general view, the other
the origin in directionu, v,w): from the direction of z-axis.
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With unit velocity translation curves we can define the
translation sphereof radiusr with centre in the origin of

gsual longitude and altidude parametérand3d, respec- X(9,0) = — cotd cosp (e—rsina _ 1)
tively ( [3]):
y(9,4) = cotd sind (e'sms - 1)
u=cosjcosp  ~MsP<T 2(9,¢) =rsind .
v = cos9dsind —géﬁég
w=sind ; As illustrations we give the following nice pictures.
I AN\
\
_ \
|
H
=S 77

Fig. 7: Translation sphere of radius 0.1. The first picture showssibieere in a general view, then from the direction of
axes z, y and x, respectively.

\
‘\

Fig. 9: Translation sphere of radius 2.
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