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ABSTRACT

The paper is devoted to the generation of frameworks of
polyhedra as ornaments of the octahedral group O. An
hierarchical block structure is used to implement the ac-
tion of O in a CAD-package. The framework is generated
by a starting (prismatic) rod as the motif. We will pro-
vide a range of examples and discuss the symmetry of the
corresponding ornaments.
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Strukture nastale pomoću oktaedarske grupe

SAŽETAK

Članak je posvećen nastajanju poliedarskih struktura
pomoću ornamenata oktaedarske grupe O. Hijerarhij-
ska blok−struktura upotrebljena je za primjenu djelovanja
grupe O u CAD-paketu. Struktura nastaje pomicanjem
(prizmatičnog) štapa kao motiva. Prikazati ćemo niz pri-
mjera i razmatrati simetriju odgovarajućih ornamenata.

Ključne riječi: poliedar, oktaedarska grupa, struktura,
geometrijsko modeliranje u CAD-paketima

1 Introduction

Any polyhedron of the 3-dimensional Euclidean space de-
termines a group of symmetry G. Its elements are direct
automorphic displacements of the polyhedron. We start
with an object M, called motif. The orbit of M with respect
to the group G is called ornament (G,M) with motif M.

There are many interesting publications with fascinating
figures dealing with such ornaments (see [1]-[9]). We will
present an approach to teach regular polyhedra and their
ornaments even for undergraduates. It is an interesting
topic to visualize the action of G with CAD-packages (see
[10], [11]). We will work with an hierarchic block struc-
ture as implementation of the corresponding group of sym-
metry G. Additionally, the design of the motives trains ge-
ometric modeling and needs familiarity with spatial con-
gruence transformations. All considerations can be per-
formed directly in the 3-dimensional space. Former trou-
bles to draw these ornaments by hand are replaced by the
use of a CAD-package.1

In this paper we restrict our examples to the group G = O:
This group O is the set of direct automorphic displace-
ments of a regular octahedron (or equivalently a cube).

2 Frameworks as Ornaments

In the introduction we have defined ornaments (G,M). We
will present examples by using one prismatic rod as motif
M. They will be defined by a regular polygon p as profile,
which is extruded along its axis g (orthogonal to the plane
of the profile).

We will present frameworks where the axes and the edges
of the rods form closed rings. They are gained, if g has at
least two intersecting neighbors (positions under G). This
will happen in the following two cases2 (which do not ex-
clude each other):

Type A: The axis g of the rod is orthogonal to at least one
rotational axis of the group G.

Type B: The axis g of the rod meets at least two rotational
axes of the group G.

1The figures of this paper are produced in the CAD-packages AutoCAD and MicroStation.
2There are more possibilities if G is containing reflections, too.
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3 The Octahedral Group

We will use some basic properties of the octahedral group
O. We will give a list of the elements of O.3 O contains
the following 24 direct displacements (see figure 1):
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Figure 1: Some axes of rotation of the group O

• The identity id.

• Rotations about 4-fold axes a connecting opposite
vertices of the octahedron.

• Rotations about 3-fold axes b connecting the centers
of opposite faces.

• Rotations about 2-fold axes c connecting midpoints
of opposite edges.

O is a normal subgroup of index 2 in the full octahedral
group Oh. Oh is the union of O and the coset Oρ = O◦ (ρ),
where (ρ) denotes a reflection about a plane of symmetry
ρ of the octahedron.

An investigation of the structure of O leads to various im-
plementations of the action of O in a CAD-package. We
suggest to use the following hierarchical procedure, which
implements O as a sequence of blocks (or models):

Motif = Identity - Triple - Pair - Group = Ornament

There the block Triple contains 3 rotated copies of the
block Identity (axis of rotation is the 3-fold axis b of the
face A,B,C of the octahedron).

The block Pair contains 2 rotated copies of the block Triple
(axis of rotation is the 2 fold axis c - c contains the mid-
point of the edge [B,C]).

The block Group contains 4 rotated copies of the block
Pair (axis of rotation is the 4-fold axis a through the vertex
A).

Our motif M is used as input into the block Identity. The
resulting ornament is generated (as output) in the block
Group. The following figure 2 displays the situation for
an arrow as motif M.
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Figure 2: The blocks of our implementation of the orna-
ments (M,O)

These preparations allow to generate various ornaments by
the choice of suitable motives.4

4 Interlinked polygons as ornaments of
case A

Firstly, we present two nice examples for case A. We will
use a cylindric rod as the motif. According to section 2 its
axis g is chosen orthogonal and skew to one of the 3- or
4-fold axis of the octahedron.

3For more details see the textbooks [1], [3], [5], [6], [7].
4The reader is invited to experiment with different motives. Even without deeper geometric considerations there can be gained fascinating ornaments.
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Example A1 (Interlinked triangles):

The axis g of the rod is orthogonal to the 3-fold axis b (see

figure 3). The ornament is gained by rotating a rod along

an edge of the octahedron with respect to the axis b (angle

2π/9).

Figure 3: Motif for figures 4 and 5

The block Triple contains 3 rotated copies of this motif,

which form a triangle. The intersection of two neighbor

rods (axis g and g∗ respectively) splits into two ellipses.

Therefore it is quite natural to use a miter cut in order to

get fitting rods. This miter cut follows the plane of symme-

try σ of g and g∗ through the center M of the polyhedron.

The following figure 5 shows the result with an inscribed

sphere, which is used to hide some parts in the back and

to highlight the structure of the framework. There are 8

triangles, each interlinked with 3 neighbors. It needs some

attempts to gain a solution without self-intersections. Fig-

ure 4 displays the necessary conditions: In order to get the

ornament the triangle (included in the block Triple) is ro-

tated about the 2-fold axis c. To guarantee that the original

and the rotated triangle are interlinked, the two-fold axis c

has to intersect the initial triangle in an inner point. The ra-

dius of the rod has to be smaller than the distance of g and

of c (see figure 4). Based on these ornaments there exist

some art objects (see H.S.M. COXETER [4]).

s

c

Figure 4: The block Triple

Figure 5: Interlinked triangles

Example A2 (Interlinked Quadrangles):

The axis g of the rod is orthogonal to the 4-fold axis a. A
rod chosen accordingly will deliver the ornament displayed
in figure 6.

Figure 6: Interlinked squares
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5 Frameworks as ornaments of case B

Secondly, we turn to case B and we will use prismatic rods.
The axis g of the rod meets two (or more) axes of the oc-
tahedron. We generate a prismatic rod R by extrusion of
a regular hexagon along the axis g. As in case A the rod
R should fit its neighbors. Additionally, we want to get
intersecting edges for intersecting prismatic rods.

We consider an n−fold axis z intersecting g at a point Z
(see figure 7). g∗ is the axis of the neighbor rod R∗ (rota-
tion ρ of g about the axis z through the angle 2π/n). This
rotation can be generated as composition of two reflections
(σ) ◦ (ε): The first plane is ε := [g,z], the second plane σ
is the plane of symmetry of g and g∗ through z. We get
intersecting edges on R and R∗ if the rotation ρ and the
reflection in the plane σ yield the same rod R∗. This is
guaranteed if the rod R is plane symmetric with respect to
the plane ε (σ is used as the plane of a miter cut). As the
n−fold axis z contains the center M of the polyhedron we
have ε = [g,M]. Hence ε is independent from the axis z.
The rod R has a second neighbor R∗∗ (rotated copy of R,
rotation about z through the angle −2π/n). As before, we
put a second miter cut through R. Figure 8 shows the re-
sult. In general the two miter cuts are different - in the case
of a 2-fold axis (n = 2) the two cuts are coincident.

z

g*

g

s

e
R*

R

Figure 7: Fitting edges

g meets a second axis z̄ of the octahedron. Therefore there
exist two further miter cuts (fitting the new neighbors). z̄ is
a line in ε, too. The symmetry of the rod R with respect to ε
guarantees that the edges of R and their new neighbors are
intersecting in points of the corresponding miter cut. To
get ornaments with closed rings we chose as motif a rod

with axis g = [1,2] where 1 and 2 are points of intersec-
tion from g and two axes of the octahedron. The planes of
the miter cuts are planes through 1 and 2, respectively (see
figure 9).

Figure 8: The rod with 2 miter cuts

Figure 9: The rod with 4 miter cuts

Remarks: a) As a consequence of these considerations we
will use prismatic rods R (axis g) symmetric with re-
spect to the plane ε := [g,M] henceforth.

b) If this reflection of the rod R is an automorphic reflec-
tion of the octahedron, we gain ornaments from the full
octahedral group Oh.5

In order to get a structured presentation for examples in
case B we will give a complete list of different types of
these planes of symmetry ε with respect to the octahe-
dron. As ε has to contain at least two axes of the octa-
hedron, we study the bundle of the rotational axes. All
plane sections of this bundle are projectively equivalent.
We will use the section with a plane π orthogonal to the
2-fold axis c1 (see figure 10). The points A1,A2 and A3

denote the intersections of the 4-fold axes, B1,B2,B3,B4
and C1,C2,C3,C4,C5,C6 those with 3-fold and 2-fold axes,
respectively. The points A3, B3,B4 and C6 are points at
infinity.

5Our next examples show, that there are examples for frameworks as ornaments in the group O which do not belong to the full group Oh even if our
motif has a reflection symmetry.
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Figure 10: The configuration of the intersections of the
axes from O in π

The different types of planes of symmetry ε have lines of
intersection in π, which are highlighted by different colors
in figure 10:

B1. ε contains exactly two axes of the octahedron (red): ε
is spanned exactly by a 3-fold axis (e.g. b2) and a 2-fold
axis (e.g. c2) which do not belong to one triangular face of
the octahedron. ε is no plane of symmetry for the octahe-
dron!

B2. ε contains exactly three axes of the octahedron (green):
ε contains three 2-fold axes (e.g. c1,c2,c4). ε is no plane
of symmetry for the octahedron!

B3 ε contains exactly four axes of the octahedron: Here we
have two distinct cases:

B3a. ε contains two 4-fold and two 2-fold axes of the oc-
tahedron (blue, e.g. a1,c1,a2,c6). ε is a plane of symmetry
containing 4 edges of the octahedron.

B3b. ε contains one 4-fold axis, two 3-fold axes and one
2-fold axis of the octahedron (magenta, e.g. a 3,b1,c1,b2).
ε is a plane of symmetry of the octahedron.

For B3a and B3b the plane ε is a plane of symmetry of the
octahedron. Hence, in these cases our procedure yields or-
naments from the full octahedral group Oh. Now we are
going to present some examples:

Case B1:

g intersects a 3-fold axis b and a 2-fold axis c of the octa-
hedron, which do not belong to one face of the octahedron
(see figure 11)6. The two axes b and c are orthogonal lines.
Therefore it is natural to take our line g on one side 12 of
a quadrangle (green) with vertices on b and c. The corre-
sponding ornament is displayed in figure 12. It consists of
12 ”half - quadrangles”, which form closed loops of 6 rods.
In order to get its structure they are displayed in different
colors.

12

Figure 11: g meeting a 2- and a 3-fold axis

Figure 12: Ornament

6If there is only one axis of the same type we omit the indices of the axis.
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Case B2:

g intersects two 2-fold axes c1 and c2 of one face of the
octahedron (figure 13). The plane ε = [g,M] = [c1,c2] is
orthogonal to a 3-fold axis b. As a first choice we take
the axis g1 like in figure 13. The ornament is displayed
in figure 14. It consists of four triangular stars. A very
special version is displayed in figure 15: There the axis
g2 of the rod is orthogonal to the 2-fold axis c2. Then the
two rods meeting at c2 have the same axis - hence the star
degenerates into a triangle. The ornament consists of 4 in-
terlinked triangles (each is built up from 6 copies of the
motif). Again we gain an ornament known from art (see
H.S.M. COXETER [4]).

�

Figure 13: g1 and g2 intersecting two 2-fold axes

In this case we have a third 2-fold axis c3 in ε. The point of
intersection on g and c3 can be an outer or an inner point of
12. The latter case gives ornaments with self-intersections
(no example displayed).

Figure 14: Triangular stars

Figure 15: Interlinked triangles

Case B3a:

g is a line in the plane ε[a1,c1,a2,c6] (see figure 16). Our
rod is restricted to two of these axes (points 1,2). If the
initial rod follows an edge on the octahedron from the ver-
tex to its midpoint we gain a framework ornament of the
octahedron. If one of the other axes intersects [1,2] in an
inner point we get self-intersecting ornaments. The fol-
lowing example (figure 17) is gained by using 1,2 as end-
points on a 2-fold and a 4-fold axis. The second 2-fold
and the second 4-fold axis intersect [1,2] in inner points.
Therefore we get 2-fold and 4-fold self-intersections of the
ornament. Figure 18 displays another example of this case
with 2-fold self-intersections: The end-points 1 and 2 are
chosen on the 4-fold axes a1 and a2 (see figure 16).

Figure 16: g for case B3a
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Figure 17: Example with 2-fold and 4-fold self-
intersections

Figure 18: Example with 2-fold self-intersections

Case B3b:

g is a line in the plane ε[a3,b1,c1,b2] (see figure 19). We
choose the points 1,2 on the 4-fold axis a3 and the 3-fold
axis b1. The rod g1 is parallel to the second 3-fold axis b2

in ε, g2 is parallel to the 2-fold axis c1 (see figure 19).

Figure 19: g1,g2 and g3 for case B3b

The corresponding ornaments are the Rhombic Dodeca-
hedron (figure 20) and the famous Stella Octangula by

J. KEPLER (figure 21). The latter is a compound of two
congruent regular tetrahedra which are displayed in differ-
ent colors.

Figure 20: Rhombic Dodecahedron

Figure 21: Stella Octangula

There are various cases with further intersections of the
rods. Figure 22 displays an example with 2-fold self-
intersections. The initial rod has the axis g3 (see figure
19). It is orthogonal to the 3-fold axis b1.

Figure 22: Example for case B3b
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KoG•9–2005 O. Röschel, S. Mick: Frameworks Generated by the Octahedral Group

Of course, the prismatic rod can be replaced by any other
motif. If we extrude the hexagon along a curved path we
gain further ornaments. Figure 23 displays one example.
In order to get fitting edges again we have to guarantee
the existence of the corresponding and fitting miter cuts.
This implies that the motif has to be symmetric with re-
spect to the corresponding plane of symmetry ε (at least in
the neighborhood of the end-points of the path). If the path
is in the plane ε this condition holds automatically.

Figure 23: Curved rods

6 Conclusion

We have presented a range of examples generated as orna-
ments of the octahedral group O. The action of the group O
was implemented by a hierarchical block structure. Tech-
nically speaking, this was an ideal tool to keep track of the
generation of the ornaments. We have started with pris-
matic rods as motives and have used miter cuts in order to
get fitting edges.

In the very last figure 23 we replaced the prisms by other
geometric objects. Further generalizations of this step
(with a spatial curve path) will reveal ornaments which can
be viewed as objects between geometry and art.

Additionally, the presented geometric considerations and
methods can as well be applied to symmetric groups of
other polyhedra, too. In [10] we have presented some orna-
ments of the icosahedral group. A paper devoted to frame-
works as special ornaments of the icosahedral group is in
preparation.

The topic is an ideal training field for spatial transforma-
tions. The key to the systematic approach is the use of
professional CAD-packages against the backdrop of some
geometric knowledge. We do hope that the beauty of the
ornaments will inspire some of the readers to make their
own experiments in this fascinating field.
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