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Marija Šimić Horvath, Ema Jurkin, Vladimir Volenec: On Some Proper-
ties of Parabola in Isotropic Plane . . . . . . . . . . . . . . . . . . . . . . . . 25

István Talata: Generalizations of Schönhardt’s Polyhedron in the d-dimensional
Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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Plenary lectures

Of Peacock Feathers, Ellipses on Toruses,
Crop Circles and other Mysterious Things

Georg Glaeser
Department of Geometry, University of Applied Arts Vienna, Vienna, Austria

e-mail: georg.glaeser@uni-ak.ac.at

Franz Gruber
Department of Geometry, University of Applied Arts Vienna, Vienna, Austria

e-mail: franz.gruber@uni-ak.ac.at

Geometry is one of the oldest sciences in human history. With the help of fast com-
puters, its applications have gone beyond our wildest dreams of a few decades ago.
In this talk, the authors want to show their way of tackling some exciting geomet-
ric “daily-life applications”. The results are useful for explaining more complicated
considerations, and in some cases, they might even lead to otherwise hard to achieve
new results.

Figure 1: The different colors of a peacock feather are not due to pigments, but
are rather the result of multiple refractions, multiple total reflections and eventually
interferences of light waves. For accurate simulation, the spectral colors have to be
treated separately and after that combined into the final color.
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How do the colors of peacock feathers come about (Fig.1)? It is known that
they are not derived from pigments, but which conditions lead to which result? For
better understanding, we have developed tools to simulate the propagation of light
waves after reflection, refraction and diffraction at the double slit.
The residual figures give three more examples of the contents of the talk (the ac-
companying text is self-explanatory).

Figure 2: “Ellipses on a torus”: If we consider an ellipse as the locus of all points
with a constant sum of the distances to two fixed points, then we can also define such
curves on doubly curved surfaces like a torus. The results can look quite different.

Figure 3: A non-negligible number of people still believes that some crop circles have
be made by aliens in order to communicate with humans. However, it is possible for
a small group of people to produce such geometric patterns within a few nocturnal
hours. We present an example of how to proceed. In many cases, the always existent
tracks of agricultural machines play an important role or are at least helpful.
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Figure 4: Most people believe that photographic images depict reality. This is,
however, not always the case. The so-called rolling shutter effect may appear quite
heavily when we deal with high speed motions. It does not help when we choose
an extremely short aperture time: The image is stored “line by line”, and this
procedure often takes much longer than the aperture time. During that short span
of time, e. g., wings of insects may move to completely other positions, appearing
completely distorted but still sharp in the image.

Key words: light propagation, non-Euclidean geometries, crop circles, rolling
shutter effect

MSC 2010: 51P05, 51K05, 51M09

References

[1] Glaeser, G., Geometry Tools: 500+ Applications in Science, Arts and Technology,
Springer International London, to appear Dec. 2019

[2] Glaeser, G., Roskar, M., Maths and humour. Solving everyday problems with math-
ematics, de Gruyter, to appear Sep. 2019.
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Representation and Design of Ruled Surfaces Based on the Dual
Unit Sphere

Daniel Lordick
Institute of Geometry, Technische Universität Dresden, Dresden, Germany

e-mail: daniel.lordick@tu-dresden.de

The development of concrete shell structures based on ruled surfaces was a project
within the Priority Programme “Concrete Light” (SPP 1542) of the German Re-
search Association (DFG). Within the project, the four-dimensional manifold of ori-
ented lines (spears) in the three-dimensional Euclidean space was handled with the
help of the dual unit sphere [1]. One of the outcomes was the add-on LineGeometry
for the plug-in Grasshopper of the CAD-software Rhinocerosr.

This talk will present visualizations on the dual unit sphere (Fig. 1), strategies
and examples for the design of ruled surfaces from control lines, and applications
for the add-on LineGeometry. Furthermore, a short summary of the summer school
“Line Geometry for Lightweight Structures (LGLS)” will be given.

Key words: ruled surfaces, dual unit sphere, dynamic relaxation, line geometry,
form finding

MSC 2010: 53A25, 51M30, 70G65

Figure 1: Hyperboloid of one sheet and its representation based on the dual unit
sphere

References

[1] Hagemann, M., Klawitter, D., Lordick, D., Force Driven Ruled Surfaces,
J. Geom. Graph. 17 (2) (2013), 193–204.
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Geometric Genesis and Form Variation of Focal-Directorial Curves
and Surface

Maja Petrović
The Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia

e-mail: majapet@sf.bg.ac.rs

In this work, the starting point was a well-known geometric problem stated by a
French mathematician Pierre de Fermat in the 17th century. The problem is as
follows: in Latin “datis tribus punctis, quartum reperire, a quo si ducantur tres
rectae ad data puncta, summa trium harum rectarum sit minima quantitas” or in
the English translation “for three given points, the fourth is to be found, from which
if three straight lines are drawn to the given points, the sum of the three lengths is
minimum”, [3], [7].

The geometric solution to this problem was given by Evangelista Torricelli, who
showed that a point satisfies the demands, [9]. This point, called the Fermat-
Torricelli point, is considered to be the fifth significant point of a triangle. Fur-
thermore, the Fermat-Torricelli point can be determined as a minimal value of the
parameter S in the expression R1 + R2 + R3 = S which generates a trifocal curve.
This curve was introduced by James Clerk Maxwell [5], [7]. In the 20th century while
solving some optimization problems Alfred Weber, an Austrian economist, general-
ized the Maxwell’s expression introducing weight coefficients so that the expression
becomes a1R1 + a2R2 + a3R3 = S. Curves obtained through this expression are
known as isocost curves, [10], [7].

Introducing the duality in plane between points and straight lines we can define
the following problem: for three given triangle sides (straight lines), the point is
to be found, from which if three normals are drawn to the given sides, the sum of
the three normals’ length (distances) is minimum. The three-directrix curve can
be expressed by r1 + r2 + r3 = S. This curve, generalized by introducing weight
coefficients, i.e. b1r1 + b2r2 + b3r3 = S, was defined for the first time in [1].

Combining these two problems, a correspondence with some geometric inequal-
ities of polygons can be noticed. This fact was of use to the definition of transitory
type of plane curves which we name Weberian focal-directorial curves (WFDC), [1].
The generalization comprises the introduction of an arbitrary number of foci and
directrices, so that the following definition a1R1 + ...+amRm + b1r1 + ...+ bnrn = S
was obtained. Herewith, we consider particular variations of the WFDC with re-
spect to the starting parameters: disposition of foci/directrices, change of weight
coefficients a1, ..., am; b1, ..., bn, and sum of distances variation; see Fig. 1 and Fig. 2.

In 3D space, we generalize this problem to surfaces’ generations by introducing
directorial planes. Therefore, three geometrical elements: point as a focus, straight
line and plane as directrices are the directors for Weberian focal-directorial surfaces
(WFDS), being geometric locus in space of the constant sum of distances to m foci,
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n line directrices and k plane directrices defined by the following expression a1R1 +
...+amRm+b1r1+...+bnrn+c1h1+...+ckhk = S, [1]. Herewith, we consider particular
variations of the WFDS with respect to the starting parameters: disposition of
foci/directrices, change of weight coefficients a1, ..., am; b1, ..., bn; c1, ..., ck, and sum
of distances variation, as well. In Fig. 3, we present the variation of form of WFDS
with six foci and six line directrices which coincide with vertices and basis edges and
sides of hexagonal prism (m = n = k = 6) when weight coefficients are predefined,
i.e. a1 = ... = am = 1; b1 = ... = bn = Bi < 0, i = 1, ..., 4; c1 = ... = ck = 0; S = 0.

Geometric genesis of focal-directorial curves and surfaces turns out to be a suit-
able base for space design in architecture and urbanism as well as in other engineering
fields applications. Some proposals in cupolae design can be found in [2].

Key words: Fermat-Torricelli point, focal curve and surface, directorial curve and
surface, focal-directorial curve and surface

MSC 2010: 51N20, 53A04, 53A05
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m = n = 3; m = n = 4; m = n = 5; m = n = 6;

Figure 1: Variations of WFDC with parameters: a1 = ... = am = 1;
b1 = ... = bn = −1; Si > 0, i = 1, ..., 5

m = n = 3; m = n = 4; m = n = 5; m = n = 6;

Figure 2: Variations of WFDC with parameters: a1 = ... = am = 1;
b1 = ... = bn = Bi < 0, i = 1, ..., 5; S = 0

1) B1 = −1.42 2) B2 = −1.5

3) B3 = −1.55 4) B4 = −1.6

Figure 3: Variations of WFDS
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Architectural Geometry – Practical Use and Applications

Milena Stavrić
Institute of Architecture and Media, Graz University of Technology, Graz, Austria

e-mail: mstavric@tugraz.at

Albert Wiltsche
Institute of Architecture and Media, Graz University of Technology, Graz, Austria

e-mail: wiltsche@tugraz.at

The entire field of architecture offers a broad field for geometric applications. It
almost seems as if architecture has replaced kinematics as the “paradise” for the
geometrician. An architectural project is always permeated by geometric questions
from early design to production. Geometry is always confronted with different ques-
tions of different quality, especially when it comes to non-standard architecture.
These questions are as follows:

• What is the right means of representation for the first design ideas? Should it
be paper and pencil, a scaled model or already a CAD-package?

• While architectural design is always three-dimensional, plans and blueprints
are often drawn two-dimensional. Why is there still such a gap between two-
and three-dimensional information?

• An architect must always have an eye on the material properties. How can we
enrich the theoretical, geometric model with material and structural informa-
tion?

• A contemporary architect has to deal also with the manufacturing process,
especially more and more with CNC fabrication and its programming. Is the
architect of the future not only a designer but also a multi-trained expert
between draughtsman, craftsman, programmer, IT- and geometry-expert?

• The robot-controlled construction site is a small dream, but one has to deal
with it today. Where will architecture and the associated geometry go in the
next 20 years?

Using examples from our courses, we present our approach and completed projects,
as well as the geometric problems we have faced throughout the process, from design
to production.

8
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Contributed talks

Packing Stars in Fullerenes and other Polyhedra

Tomislav Došlić
Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: doslic@grad.hr

Let G and H be two simple connected graphs. An H-packing of G (or a packing of
H in G) is a collection of vertex-disjoint subgraphs of G such that each component is
isomorphic to H. If a packing is a spanning subgraph of G, we say that the packing
is perfect.

A (k, 6)-fullerene graph is a planar, 3-regular and 3-connected graph with k-gonal
and hexagonal faces. For k = 5 we have ordinary fullerene graphs, while for k = 3
or 4 we speak of generalized fullerenes.

It this contribution, we investigate the existence and properties of perfect pack-
ings ofK1,3 (and also some other small graphs) in ordinary and generalized fullerenes.

9



Abstracts − 21st Scientific-Professional Colloquium on Geometry and Graphics

Sisak, September 1–5, 2019

On Killing Magnetic Curves in SL(2,R) Geometry

Zlatko Erjavec
Faculty of Organization and Informatics, University of Zagreb, Varaždin, Croatia

e-mail: zlatko.erjavec@foi.hr

Magnetic curves represent trajectories of charged particles moving on a Riemannian
manifold under the action of a magnetic field.

A vector field X is a Killing vector field if the Lie derivative with respect to X
of the ambient space metric g vanishes. The Killing vector field can be interpreted
as an infinitesimal generator of isometry on the manifold in the sense that the flow
generated by this field is a continuous isometry of the manifold.

The trajectories corresponding to the Killing magnetic fields are called the Killing
magnetic curves. Killing magnetic curves in Minkowski space, Euclidean space, Sol
space and S2 × R space were studied in [1, 2, 3, 4], respectively.

We consider the Killing magnetic curves in SL(2, R) space.

Key words: SL(2, R) geometry, Killing vector field, magnetic curve

MSC 2010: 53C30, 53B50, 53Z05.

References
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[4] Munteanu, M.I., Nistor, A.I., The classification of Killing magnetic curves in S2×R,
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Using the GWS Model in the Conceptual Development of Rotation

Nikolina Kovačević
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia

e-mail: nkovacev@rgn.hr

The mathematical rigid transformation of rotation takes an important place in the
education of geologist where structural lines and planes have often been rotated
from some initial spatial orientation. Therefore, mathematical education of geolo-
gist is traditionally full of the use of instant constructive methods that need to be
constantly adapted to the use of new artefacts. When using these methods, stu-
dents often prefer to use previously memorized (often inaccurate) procedures rather
than creating links within a given problem or drawing conclusions from a given
representation.

This presentation reviews some psychological and educational research to high-
light the problems in connection to the conceptual understanding of transformation
of rotation. The author’s teaching experience based on the use of the Geometric
Working Space model is given. The GWS model enables understanding of the
circulation of knowledge within a specific geometric task.

Key words: transformation geometry, conceptual knowledge, task analysis

MSC 2010: 97C30, 97C70, 97B40
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[1] Barabash, M., Angle concept: a high school and tertiary longitudinal per-
spective to minimize obstacle, Teaching Mathematics and its applications: An
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Kolar-Begović, Z., Kolar-Šuper, R., Jukić Matić, Lj. (Eds.), 2019,
60–73.

[3] Kuzniak, A., Richard, P.R., Spaces for Mathematical Work: Viewpoints
and perspectives, Revista Latinoamericana de Investigacion en Mathematica
Educativa 17 (4) (2014), 7–40.
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Dense Regular Ball Packings
in Higher Dimensional Hyperbolic Spaces

Robert Thijs Kozma
Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, USA

e-mail: rthijskozma@gmail.com

We discuss regular ball packings of hyperbolic space, where the symmetries of
the packings are given Coxeter simplex groups. We produce the densest known
horoball packings in dimensions 3 ≤ n ≤ 9. We highlight a class of 3-dimensional
packings that achieve the packing density the upper bound due to K. Böröczky,
but with a different symmetry group, and provide visualizations in the projective
model of hyperbolic geometry. Other packings we found include ones that exceed
the conjectured 4-dimensional packing density upper bound due to L. Fejes-Tóth

(Regular Figures, 1964) with densities of 5
√

2
π2 ≈ 0.71644896, and we mention the

densest known packings in the remaining dimensions.
This is joint work with J. Szirmai.
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The 5-dimensional Regular Solids Move on the Computer 2-screen
with Visibility

Emil Molnár
Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary

e-mail: emolnar@math.bme.hu

István Prok
Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary

e-mail: prok@math.bme.hu

Jenő Szirmai
Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary

e-mail: szirmai@math.bme.hu

In previous works (see [1], [2], [3]) the authors extended the method of central projec-
tion to higher dimensions, namely, for E4 → E2 projection from a one dimensional
centre figure, together with a natural visibility algorithm. All these are presented in
the linear algebraic machinery of real projective sphere PS4 or space P 4(V5, V5,∼)
over a real vector space V5 for points and its dual V5 for hyperplanes up to the usual
equivalence ∼ (expressed by multiplication by positive real numbers or non-zeros,
respectively).

In this presentation we further develop this method for E5 → E2 projection by
the exterior (Grassmann - Clifford) algebra (with scalar product) and implement on
computer with other effects of illumination, e.g. for (regular and other) polytopes
on the base of the homepage http://www.math.bme.hu/~prok. The machinery is
applicable for any d-dimensional projective space P d and p-dimensional image.

References

[1] Katona, J., Molnár, E., Visibility of the higher-dimensional central projection into
the projective sphere, Acta Math. Hungar. 123 (3) (2009), 291–309.

[2] Katona, J., Molnár, E., Prok, I., Visibility of the 4-dimensional regular solids,
moving on the computer screen, Proc. 13th ICGG, Dresden, 2008.

[3] Katona, J., Molnár, E., Prok, I., Szirmai, J., Higher-dimensional central projec-
tion into 2-plane with visibility and applications, Kragujevac J. Math. 35 (2) (2011),
249–263.
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Remarks on Algebraic Geodesics on Quadrics

Boris Odehnal
Department of Geometry, University of Applied Arts Vienna, Vienna, Austria

e-mail: boris.odehnal@uni-ak.ac.at

Geodesics on quadrics, especially on ellipsoids, have frequently attracted the interest
of mathematicians. It is well-known that (non-algebraic) geodesics on ellipsoids
oscillate between lines of curvature. Further, the tangents of a geodesic on a quadric
Q are tangents to a confocal quadric F . Therefore, the tangent developable of a
geodesic on Q is a developable ruled surface in the congruence of common surface
tangents of Q and F .

Y.N. Fedorov has shown in [1] how to construct algebraic geodesics on
quadrics. Based on the complicated, but efficient construction, A.M. Perelomov
gave a few examples of closed, algebraic geodesics on all affine types of quadrics in
[4, 5].

In this presentation, we add some more results on low degree algebraic geodesics
on quadrics. Besides the obvious existence of rational parametrizations in the very
low degree cases, we find that algebraic geodesics on quadrics can be quartic space
curves of the first and second kind as well. On paraboloids, even cubic space curves
can occur as algebraic geodesics.

Key words: geodesic, algebraic curve, closed curve, quadric

Figure 1: Closed algebraic geodesics on a triaxial ellipsoids: a geodesic with a double
point (left), without double point (right). In both cases we have chosen the shape
parameter a = 4.
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Figure 2: Left: The rational geodesic g on the one-sheeted hyperboloidH is a quartic
of the second kind. The curve g is a part of the intersection of the hyperboloid H
and a cubic surface C. The two rulings e1 and e2 are also common to both, H and
C. Right: Another geodesic of the same type shows that these curves can have real
ideal points.
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The Neighborhood Complexes of Almost s-stable Kneser Graphs
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In 1978, László Lovász proved the famous Kneser Conjecture concerning the
chromatic number of the Kneser graphs KGm,n by introducing the neighborhood
complex. In the same year, Alexander Schrijver defined certain induced subgraphs
of KGm,n – called the stable Kneser graphs SGm,n – and showed that they are
vertex-critical. Schrijver used another, Bárány’s method, to obtain the chromatic
number of the stable Kneser graphs. Almost 25 years later, in 2002, Anders
Björner and Mark de Longueville studied the neighborhood complex of SGm,n,
and determined its homotopy type [1]. Frédéric Meunier generalized Schrijver’s
construction and formulated the conjecture on the chromatic number of the s-stable
and almost s-stable Kneser graphs. We determined the homotopy type of the
neighborhood complex of the almost s-stable Kneser graphs [2]. In conjunction with
Lovász’s topological bound on the chromatic number, we gave the chromatic num-
ber of these graphs, which was recently determined by Chen using other methods [3].

Key words: almost stable Kneser graph, neighborhood complex, homotopy type

MSC 2010: 55P15, 05C15

Figure 1: The almost 2-stable Kneser graph SG∼5,2 and its neighborhood complex of
it.

References

[1] Björner, A., de Longueville, M., Neighborhood complexes of stable Kneser
graphs, Combinatorica 23 (2003), 23–34.

16



Abstracts − 21st Scientific-Professional Colloquium on Geometry and Graphics

Sisak, September 1–5, 2019
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Playing Architecture via Geometry and Graphics:
Testing Unreal Engine
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The process of digital and technological evolution in recent years has shifted to words
such as Virtual Reality and Artificial Intelligence. However, the use of these and
other technologies in architecture is still limited by a lack of IT tools, which have only
been made fully available in the last few years. The evolution of architectural design
tools can be condensed into a sequence: (analogue) Drawing Board, AutoCAD,
Game Engine, also representative of the historical contexts in which they have been
developed and used. This study, based on a Master thesis recently discussed at the
Politecnico di Milano, examines the role that Game Engines can play in the graphic
representation and design processes. More specifically, it takes a closer look at the
Unreal Engine release 4 (UE4) as a tool for creating a real-time design environment
and for using Artificial Intelligence (AI) technologies to represent users’ flows in
the space, which can be adopted to carry out design strategies and to evaluate
design options. For this purpose, various simulations have been developed, either
considering the pedestrian planar flows interlinked with the form of space, either
parametrically generating the spaces on the bases of the number of users. The first
series of tests is then based on pre-assigned spatial contexts. In order to test the
AI programmed sets, different situations were figured out and modeled in advance.
Given the assigned space, a series of points has been subsequently assigned, working
as ‘attractors’ according to possible users’ interest locations, and a virtual robot
(silhouette) has been placed to explore the various possible paths, based on a random
sequences of movements towards the assigned attractor-points. In order to be able
to graphically represent the visual simulations, the silhouette has been equipped
with a tracing video-camera system shoving at the same time its movements and
the scene from the camera point of view, and allowing to reproduce in real-time the
flows as graphic diagrams in the space. The AI system was also tested in a 3D spatial
context characterized by differences in heights, such as inclined corridors, vertical
lifts, and so on. A second series of tests has been carried out considering the inverse
process, that is, implementing a generative system able to create new spaces, such
as rooms and paths, according to the needs emerged from the real-time analysis of
the parametrically assigned users’ flows. Therefore, a generative algorithm was set,
able to update the geometry of space according to the number of people supposed
to ‘need space’: in other words, space expanded according to the number of users.
This generative process is based on a preliminary evaluation of the entire generative
process, which essentially controls the generation itself in order to match ‘rooms and
paths’ with the number of users. Further developments can of course explore more
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advanced aspects, like patterns referring to perceptual senses (sight, hearing, or
tactile, also including external events, and so on), and translate them into the
virtual environment, based on similar parametric operations. Another extremely
important issue is the psychological behavioral factor linked to the movement of
the individuals in relation to the masses and vice versa. This last point introduces
another relevant subject linked to the ‘realism’ of the context of the AI environment.
In this case, given the difficulty of translating behavioral psychological aspects into
appropriate descriptive codes because of their probabilistic nature, it would be
appropriate to introduce neural networks technologies based on machine learning
and deep learning systems, what we are aiming to do in the future. What we
developed here with Unreal Engine would only shows the power and the potentiality
of this typology of software, which is still to be fully discovered, since it has been
available only few years ago, and the software houses are only recently getting
increasingly interested in the architectural field. However, considering the present
state of art, we tried to propose some little tests on if and how it is possible to use
the system outside of its native target environment, adapting it to an architectural
design spatial context. In our case the thesis, which was at the origin of this work,
focused on the use of UE4 to realize an AI system helpful to represent and control –
visually and parametrically – pedestrian flows in a three-dimensional environment,
either pre-existing or generated according to specific inputs. More generally, linking
analysis and project, especially in more complex scenarios, it can serve as a tool
for mapping and analyzing architectural contexts, as well as for implementing,
verifying, and comparing design choices, that is, efficiently sustaining the whole
chain of the architectural design process.

Key words: artificial intelligence, flows, parametric modeling, dynamic environ-
ment, Game Engines, simulations

MSC 2010: 00A66, 51N05, 01A05, 97U99

Figure 1: Synthesis and results of the process implemented for the tests (models by
authors).
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Focal Sets of B-scrolls in Lorentz-Minkowski 3-space
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Faculty of Science, University of Zagreb, Zagreb, Croatia

e-mail: milin@math.hr

Ljiljana Primorac Gajčić
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In this presentation we analyse focal sets of B-scrolls in Lorentz-Minkowski space.
B-scrolls are examples of Lorentzian surfaces having no Euclidean counterparts,
characterized by the property that their shape operator is not diagonalizable ([1],
[2]). They are all ruled surfaces having null (lightlike) rulings. In [3] it was shown
that their focal set degenerates to a curve which is of either null or spacelike causal
character. In this work we analyse B-scrolls having a spacelike curve as the focal
set.
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lutes Of B-Scrolls with Constant Mean Curvature in Lorentz-Minkowski Space, Int. J.
Geom. Methods Mod. Phys., https://doi.org/10.1142/S0219887819500762

21



Abstracts − 21st Scientific-Professional Colloquium on Geometry and Graphics

Sisak, September 1–5, 2019

Orthogonality in Mn(C) and Geometry of the Numerical Range
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Let Cn be the linear space of all ordered n-tuples x = (x1, . . . , xn) of com-
plex numbers equipped with the Euclidean norm ‖x‖ = (

∑n
i=1 |xi|2)1/2. Let

Mn(C) denote the space of all n × n complex matrices with the norm defined
by ‖A‖ = max‖x‖=1 ‖Ax‖, A ∈ Mn(C). In this talk, we consider two types of
orthogonality in Mn(C) : the Birkhoff–James and the Roberts orthogonality. Some
geometric properties of the (generalized) numerical range of a matrix are described
in terms of these orthogonalities.

The talk is based on the results coming from joint works with Ljiljana Arambašić
(University of Zagreb) and Tomislav Berić (University of Zagreb).

This research was supported by the Croatian Science Foundation under the project
IP-2016-06-1046.

Key words: Birkhoff–James orthogonality, Roberts orthogonality, numerical range
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Geometry of Split Quaternion Factorization
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The factorization of a quadratic split quaternion polynomial C has been investigated
in [1] and, more recently, in [2]. The complete discussion requires a number of
case distinctions, including inequality constraints and square roots. Moreover, the
authors of both papers do not consider the case when the norm polynomial of C
vanishes.

We present a complete geometric classification of factorizability of C in terms of
the rational curve γ parameterized by C in the projective space of split quaternions.
It is based on the type of γ (conic, line, point) and on its intersection points with
the quadric N of non-invertible split quaternions. The main statements are:

• A factorization exists if γ is a conic (possibly on N), a null line, or just a point.

• If γ spans a non-null line L, a factorization exists if and only if L intersects
N in at least one point and in the same number of points as the point set
parameterized by C. (Only real intersection points are to be considered.)

Our geometric interpretation not only provides a rather simple geometric char-
acterization of factorizability but also sheds new light on algorithms for computing
factorizations, also over other quaternion algebras. Some aspect generalize to higher
degree polynomials.

This is joint work with Daniel F. Scharler and Johannes Siegele and is supported
by the Austrian Science Fund (FWF): P 31061 (The Algebra of Motions in 3-Space).

Key words: split quaternions, matrix polynomial, factorization
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Revisiting Quadrics: String Constructions and Movement of Conics

Hellmuth Stachel
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria
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The lecture consists of two parts: According to D. Hilbert, Staude’s string construc-
tion of quadrics was one of the great mathematical results of the 19th century. We
give a synthetic approach to these constructions, thus reducing the proof to existence
theorems of differential equations.

The second part addresses a problem once posed by H. Brauner: There is a
three-parametric set of planes cutting a given quadric Q along central conics. But
the size of these conics depends only on its two semiaxes. Thus, there exist ellipses
or hyperbolas with a one-parameter set of congruent copies on Q. We present
parametrizations for the movements of conics on ellipsoids and hyperboloids. There
is a close connection to the theory of confocal quadrics.

Key words: string construction of quadrics, confocal quadrics, conics on quadrics

Figure 1: Movement of an ellipse on an ellipsoid with the trajectory of a vertex
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On Some Properties of Parabola in Isotropic Plane
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In this talk we are planning to show some of properties of parabola in the isotropic
plane. First, we give the properties of parabola in the Euclidean plane listed in
[1]. Some of the properties are valid also in isotropic plane and some of them have
similar analogues in the isotropic plane. The differences appear mainly in two cases.
The first is when we deal with the perpendicular lines since in the isotropic plane
they are usually switched to isotropic lines, and for the points lying on them we can
not measure distance, but span. The second case appears when it comes to the sine
of an angle since in the isotropic plane the role of the sine of angle plays the angle
itself.

In the other part of the talk we will turn the focus on the circles of curvature
at points of parabola. In [3] the authors have studied the curvature of the focal
conic in the isotropic plane where the form of the circle of curvature at its points is
obtained. Hereby, we discuss several properties of such circles of curvature at the
points of a parabola in the isotropic plane.

Key words: isotropic plane, parabola, circle of curvature
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Generalization of Schönhardt’s Polyhedron
in the d-dimensional Euclidean Space

István Talata
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A triangulation of a d-dimensional polytope P ⊂ Rd is a collection of d-dimensional
simplices with the properties that their union is P , their vertices are vertices of P ,
and any two simplices intersect in a face (possibly empty). In two dimensions, it is
well-known that every planar polygon can be triangulated.

In three dimensions, the situation is different: There are 3-dimensional poly-
hedra which are nontriangulable. The best-known example of such a polyhed-
ron is Schönhardt’s polyhedron, which is a twisted triangular prism, found by
Schönhardt [1] in 1928. In fact, there are infinitely many Schönhardt’s polyhe-
dra, since the base of the twisted prism can be any triangle, and the twist angle may
vary in an interval that depends on the shape of the triangle.

Let S be a Schönhardt’s polyhedron. It is simply connected (even starlike), and
every face of S is a triangle. S has 6 vertices, that is the smallest number of vertices
of a nontriangulable polyhedron. S contains no tetrahedron whose vertices form
a subset of the vertices of the polyhedron - this is implied by the fact that every
diagonal (a segment connecting two vertices which are not connected by an edge)
of S lies outside S. The polyhedron S can be obtained from its convex hull by
removing three tetrahedra whose vertices are vertices of S and they have pairwise
disjoint interiors.

Figure 1: Schönhardt’s polyhedron
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We consider the problem how to generalize Schönhardt’s polyhedron in the
d-dimensional Euclidean space to get d-dimensional nontriangulable polytopes
in Rd, d ≥ 4. We try to create polytopes with as many analogous properties
to a Schönhardt’s polyhedron as possible. We get some infinite families of such
d-dimensional polytopes which are nontriangulable in a nontrivial way (a trivial
way is, for example, when there is an at most (d − 1)-dimensional face of the
polytope which is nontriangulable). We also show that some analogous properties
do not hold in any generalization of Schönhardt’s polyhedron to higher dimensions.

Key words: polytope, triangulation, simplicial complex
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Beauties of Error Function
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The famous Gaussian integral, known also as the Euler-Poisson integral, of Gaussian
function over the entire real axis was originally discovered in 1733 by Abraham de
Moivre, while Gauss was the first to publish its precise form in 1809,∫ ∞

−∞
e−x

2
dx =

√
π.

There are many applications of this integral in various fields. It is widely used
in probability to compute the normalizing constant of the normal distribution and
its cumulative distribution function. In physics, such integrals appear frequently
in quantum mechanics, to find the probability density of the ground state of the
harmonic oscillator and its partition function and propagator, and in statistical
mechanics for the path integral formulation. This convergent improper integral can
be geometrically interpreted as the area of infinite curvilinear trapezoidal region
bounded from above by the standard normal distribution curve (Bell curve) and by
coordinate x-axis from below. Value of this integral is closely related to the error
function, which appears as the result of the integration commands in many computer
algebra systems, ∫

e−x
2
dx =

1

2

√
π erf(x).

The error function is a special (non-elementary) function whose graph is of a sig-
moid shape that occurs frequently in probability, statistics, and partial differential
equations describing diffusion:

erf(x) =
1√
π

∫ x

−x
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2
dt =

2√
π

∫ x

0
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dt.

It can be also represented by a McLaurin series
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Some of the “beauties” of the Bell curve and the error function graph will be de-
scribed and used in Minkowski point set operations to generate surfaces of unex-
pected forms and properties.
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Figure 1: Minkowski sum and product of the normal distribution curves

Figure 2: Minkowski sum and product of error functions
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On Parallelotope Configuration
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The parallelotope P is a convex polytope which fills the space facet to facet by its
translation copies without intersecting by inner points. The centers of the parallelo-
topes form an n-dimensional lattice.

A plane configuration is a system of p points and l straight lines arranged in a
plane in such a way that every point of the system coincides with straight lines of
fixed number γ and every straight line of the system coincides with points of fixed
number π.

In this paper I examine the connection between 3- and 4-dimensional parallelo-
topes and point-line configurations in the plane and space. Parallelotopes contain 2-
or 3-belts therefore configurations have special forms. On the other hand we must
generalize the concept of the configuration to be able to describe all parallelotopes.
So I define the parallelotope configuration: p-configuration.

Key words: parallelotope, configuration
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In this lecture, we will consider the shape of a triangle by means of a ternary
operation which satisfies some properties. It will be proved that each system of the
shapes of triangles can be obtained by means of the field with the defined ternary
operation. A geometric model of the shapes of triangles on the set of complex
numbers will be given as a motivation for introducing some geometric concepts.
The concept of transfer will be also introduced and some properties of this concept
will be investigated.

Key words: ternary operation, quasigroup, transfer
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A Set of Planar and Spatial Tessellations
Based on Compound 3D Models of the 8D and 9D Cubes
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The 3-dimensional framework (3-model) of any k-dimensional cube (k-cube) can
be produced based on initial k edges arranged by rotational symmetry, whose
Minkowski sum can be called zonotope. Combining 2 < j < k edges, 3-models
of j-cubes can be built, as parts of a k-cube. The suitable combinations of these
zonotope models can result in 3-dimensional space-filling mosaics. The investigated
periodical tessellations always hold the 3-model of the k-cube and necessary j-cubes
derived from it.

The mosaics can have fractal or fractal like structure as well, since the stones
can be replaced with restructured ones. The hulls of 3-models of k- and 3 < j-cubes
can be filled with different sets of 3-models of 2 < j < (k − 1) or 2 < i < (j − 1)
-cubes touching each other at congruent faces. Another possibility is if the 3-models
of the given k- and of the derived j-cubes are arranged along the outer edges of the
restructured models and the faces are replaced with central symmetrically arranged
sets of the above elements. The inner space of the new compound models is filled also
with the initial models. If also the inner edges are followed by 3-models of the k- and
j-cubes, the construction can require unmanageable amount of the elements, from
practical points of view, but the restructured mosaics can have a more consequent
fractal like structure.

The intersections of the mosaics with planes allow unlimited possibilities to
produce periodical symmetric plane-tiling. Moving intersection planes result in
series of tessellations or grid-patterns transforming into each other. These can be
shown in varied animations.

Key words: constructive geometry, hypercube modeling, tessellation, fractal
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Angular Proximity between Conics & Quadrics

Paul Zsombor-Murray
Faculty of Engineering, McGill University, Montreal, Canada

e-mail: paul@cim.mcgill.ca

The problem of touching of a pair of conics in the plane and a pair of quadrics in
space, initially in arbitrary position, via rotation about a given fixed axis has not yet
been treated in any available literature. Two approaches are discussed herein. In one
case the entities are expressed in Cartesian coordinates, using symmetric matrices
of coefficients and scalar equations. Constraint equations are developed in terms of
shared point and tangent line or plane after rotation. In the other case, an entity
is expressed in terms of parameterized points and the tangents are formulated as
partial derivatives of these parameterized point coordinates. Fig. 1 shows the small
ellipse rotated about the origin into four possible positions of tangency. Apart from
the four real solutions shown the first approach produces a monomial in rotation
half-angle tangent of degree 16. Will the second improve upon this?

Fig. 2 shows two ellipsoids in more or less arbitrary position. They do not touch,
so a rotation to produce mutual tangencies is just as feasible as if they had been
separated like the ellipses in Fig. 1, initially.

In Fig. 3 the blue and red horizontal sections show elliptical traces on planes
containing the (marked) points of tangency. The monomial produced with the first
approach is of degree 28 which is unsatisfactory because the parametric approach
yields one of degree 24.

The small blue ellipse rotates clockwise to assume tangency with the larger blue
ellipsoid section. Similarly, the small red ellipse rotates counter-clockwise until the
marks coincide.

Figure 1: One fixed ellipse, the other in original and four tangential positions.
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Figure 2: Two ellipsoids, intruding but not in tangency.

Figure 3: Ellipsoid horizontal sections in shared tangent planes.
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Posters

On Certain Classes of Weingarten Surfaces in SL(2, R) Space

Damjan Klemenčić
University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia
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Zlatko Erjavec
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A Weingarten surface is a surface satisfying the Jacobi equation

Φ(K,H) = det

(
Ku Kv

Hu Hv

)
= 0,

where K is the Gaussian curvature and H is the mean curvature of the surface.

The study of Weingarten surfaces was initiated by J. Weingarten in 1861. E. Bel-
trami and U. Dini few years later proved that the only non-developable Weingarten
ruled surface in Euclidean 3-space is a helicoidal ruled surface. In the last decade sev-
eral papers on Weingarten surfaces in different 3-dimensional spaces have appeared
(see [1, 2, 3, 4]).

Motivated by the fact that there are no results about Weingarten surfaces in
SL(2, R) space, we examine some classes of Weingarten surfaces using the right
half-space model of SL(2, R) space.

Key words: SL(2, R) geometry, Weingarten surface, ruled surface
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3D Graphic Statics via Grassmann Algebra

Iva Kodrnja
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The procedures for replacing a given force system with some other force system
and procedures for finding equilibrating forces to the given force system described
in the poster are carried out using geometric constructions (Figure 2) which
can be considered as a partial three-dimensional extension of funicular polygon
construction, [2], [4].
Geometrical constructions can be described in terms of basic incidence operations
- meet and join, which we translated into Python code by using homogeneous
coordinates of points, planes and also lines, where the latter is achieved by means
of Grassmann algebra [1] in the extended Euclidean space.
Visualizations of the graphical procedures are made in Rhinoceros 3D using
Grasshopper (Figure 1).

Key words: Grassmann algebra, Plücker line coordinates, 3D graphic statics,
static equivalence, equilibrating forces
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Figure 1: Program developed in Rhinoceros and Grasshopper for example for re-
placing single force with two forces, of which one acting at given point and the other
lies in a given plane, which does not contain the point

Figure 2: Procedure for finding equilibrating forces to the given two-force system
along six given lines, that is along edges of given tetrahedron
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An Artistic Approach to the Tesseract

Iva Kodrnja
Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia
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Helena Koncul
Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: hkoncul@grad.hr

“Es ist die Freude an der Gestalt in einem hoheren Sinne, die den Geometer aus-
macht.” (Clebsch, in memory of Julius Plücker, Göttinger Abh. Bd. 15), [2].
This quote translated to English reads “It is the joy in shapes in a higher sense,
what makes a geometer”, which is the perfect reflection of our feelings during our
recent and ongoing mathematical/artistic project.
It started at the LGLS (Line Geometry for Lightweight Structures) Summer school
in Dresden in October 2018 [4], and made to the art exhibition at the Bridges con-
ference in Linz in July 2019. In this poster we show our artworks and the process
of making it.

Figure 1: Detail from the exhibition in SLUB Dresden, photo by Masayo Aye
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Figure 2: Digital model for one artistic portrayal of a tesseract

Figure 3: Octahedron & 8 Parabolae, [1]
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Parametrization of Null Scrolls as B-scrolls in 3-dimensional
Lorentz-Minkowski Space

Željka Milin Šipuš
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In the Lorentz-Minkowski 3-space, every non-degenerate ruled surface with null
rulings can be reparametrized as a B-scroll, i.e. as a ruled surface whose rulings
correspond to the binormal vectors of a base curve. In this work we provide such
a reparametrization by introducing a proper null frame for a base curve related
to the rulings of a surface. By such approach, we can establish relations between
lightlike curvature of a base curve and curvatures of a null scroll. It is also shown
that every null curve lying on a null scroll can be used as a base curve for such
reparametrization.

Key words: Lorentz-Minkowski space, null scroll, B-scroll
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On Applications of Focal-Directorial Surfaces
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The innovations in creating complex geometric forms are in a high demand in various
engineering fields, particularly in architecture, which tends to be a never ending
source of ideas for shaping our living space both the interior and exterior. Therefore,
the development of novel methods for generating new geometric forms became an
everlasting topic.

We investigate the possibilities for obtaining geometric forms with respect to the
following expression

a1R1 + ...+ amRm + b1r1 + ...+ bnrn + c1h1 + ...+ ckhk = S,

defined by Maja Petrović in [1] where R1...Rm, r1...rn, h1...hk are the surface points’
distances from the correspondent foci, directrix lines and directrix planes; while
a1...am, b1...bn, c1...ck, are the weight coefficients respectively; and S is the desired
arbitrarily chosen parameter.

Herewith, we present particularly chosen examples, being the concrete applica-
tions in architecture, which illustrate the above-mentioned rule for their generation
(Fig. 1).

Key words: focal surface, directorial surface, focal-directorial surface
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Figure 1: Focal-directorial geometric forms as a designing pattern of the architectural
space
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Faculty of Architecture, University of Zagreb

garas@arhitekt.hr

2. Jelena Beban-Brkić
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Faculty of Organization and Informatics, University of Zagreb

damjan.klemencic@foi.hr

12. Iva Kodrnja

Faculty of Civil Engineering, University of Zagreb

ikodrnja@grad.hr

13. Zdenka Kolar-Begović
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