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ABSTRACT

A real affine plane Ay is called an isotropic plane o, if in
A2 a metric is induced by an absolute {f,F}, consisting of
the line at infinity f of Ay and a point F € f. In this paper
the well-known Butterfly theorem has been adapted for the
isotropic plane. For the theorem that we will further-on
call an Isotropic butterfly theorem, four proofs are given.

Leptiri u izotropnoj ravnini
SAZETAK

Realna afina ravnina Ay se naziva izotropnom ravninom |
ako je metrika u Ay inducirana apsolutnom figurom {f,F},
koja se sastoji od neizmjerno dalekog pravca f ravnine Az
i totke F € f. U ovom je radu poznati Leptirov teorem
smjeSten u izotropnu ravninu. Za taj teorem, kojeg od
sada nazivamo lzotropnim leptirovim teoremom, dana su

. . Cetiri dokaza.
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1 Isotropic Plane It is calledthe motion group of isotropic plane. Hence,
the group of isotropic motions consists of translations and

rotations, that is
X=C1+X X=X
_ and _ .
{ y==Cc+y { y=CX+Yy

In the affine model, rotation is understood as stretching
along the y-axis.

Let P,(R) be a real projective planta real line inP,, and
A, = P\ f the associated affine plane. Tisetropic plane
I2(R) is a real affine plané\, where the metric is intro-
duced with a real lind C P, and a real poinFE incidental
with it. The ordered paif f,F}, F € f is calledabsolute
figure of the isotropic planéy(R) ([3], [5]). In the affine
model, where

X=X1/X0, Y= X2/Xo, (1) 2 Termsof Elementary Geometry within I
the absolute figure is determined by ttesoluteline f =  We will first define some terms and point out some proper-
Xo = 0, and theabsolute point F (0:0:1). All projective  ti€s of triangles and circles ik that are going to be used

transformations that are keeping the absolute figure fixedfurther on. The geometry df could be seen for example
form a 5-parametric group in Sachs [3], or Strubecker [5].

| sotropic straight line, parallel points, isotropic distance,
isotropic span
All straight lines through the poirft are calledisotropic
, o ) i straight lines (isotropic lines). All the other straight
We call itthe group of similarities of isotropic plane. lines are simply calledtraight lines. Two pointsA, B
Defining in I, the usual metric quantities such as the dis- (A # B) are calledparallel if they are incidental with
tance between two points, the angle between two lines etc.the same isotropic line. For two no parallel points
we look for the subgroup dBs for those quantities to be  A(ar,az), B(b1,b2), theisotropic distance is defined by
invariant. In such a way one obtains the fundamental groupd (A,B) := by —a;. Note that the isotropic distance is
of transformations that are the mappings of the form: directed. For two parallel pointé(a;,az), B(by,b),
a; = by, the quantity known assotropic spann is defined
X=C1+X by s(A,B) := by — ay. A straight linep through two points
Gs { V=Co+CaX+Yy (3) A andB will be denoted byp = AV B, or simply p = AB.

X = C1 + CgX C1,C2,C3,C4,C5 € R @)
5\ y=Co+CaXx+Csy * & CaC5#£0.
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Invariants of a pair of straight lines

Each no isotropic straight ling C I, can be written in the
normal formy = ux-v, that s, in line coordinatesg,(u, v).

For two straight linegy; (ug,v1), g2(uz,Vv2) the isotropic
angleis defined byp = £ (g1,92) := U2 — up . Note that the
isotropic angle is directed as well. The Euclidean meaning
of the isotropic angle can be understood from the affine
model that is given in figure 1.

A

ER—
Fig. 1
For two parallel straight linegs (u1,v1) , g2 (u1,v2) there

exists an isotropic invariant defined by (g1,92) :=v2 —
vy (see fig. 2).

Fig. 2

| sotropic normal

An isotropic normal to the straight liney(u,v) in the point
P(p1,p2), P ¢ gis an isotropic line througPR. Inversely
holds as well, i.e. each straight limeC I, is a normal
for each isotropic straight line. Denoting I8/the point
of intersection of the isotropic normal in the poltwith

the straight lineg, the isotropic distance of the poiRt
from the lineg is given byd (P,g) :=s(SP)=p— s =

p2 — upy — v (see fig. 3).

F A

s(S, P)=p, -8, =Py- Upy- v
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Trianglesand circles

Under atrianglein I> an ordered set of three no collinear
points{A,B,C} is understoodA, B, C are calledvertices,
anda:=BVC, b:=CVA, c:= AV B sides of a trian-
gle. A triangle is calledllowableif no one of its sides is
isotropic. In a allowable triangle thengths of the sides are
defined by|al := d(B,C), |b| :=d(C,A), |c| :=d(A,B),
with |a] # 0, |b| # 0, |c| # 0. For the directed angles we
haveo := Z(b,c) #0,B:= Z(c,a) #0,y:= Z(a,b) #0
(see figure 4).

I sotropic altitudes hy, hy, he associated with sides b, and

c are isotropic straight lines passing through the vertiges
B, C, i.e. normals to the sides b, andc. Their lengths are
defined by|ha| := s(L(A),A), whereL (A) = anh,, etc.
The Euclidian meaning is given in figure 5.

L.,

Fig. 5

An isotropic circle (parabolic circle) is a regular 2 or-

der curve inP;(R) which touches the absolute lifen the
absolute poinf. According to the groufisz of motions

of the isotropic plane there exists Ip a three paramet-
ric family of isotropic circles, given by = Rx? + ax +

B, R#0, o, €R. Using transformations fronts,
each isotropic circle can be reduced in the normal form
y=Rx¥%, R+#0. Ris aGs invariant and it is called the
isotropic radius of the parabolic circle.
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3 Thelsotropic Butterfly Theorem

Theorem 1 (Euclidean version) Let M bethe midpoint of
a chord PQ of the circle, through which two other chords
AB and CD are drawn; AD cuts PQ at X and BC cuts PQ
atY. M isalso the midpoint of XY.

The proofis givenin [3, p. 32].

Lemma?2 Therelations
lal _ bl _ |c|
o B ’

hold for every allowabletriangle.

lha| = [c|B, [ho| =[alx, [he| = [ba

This theorem has been proved in a series of books and pa-

pers (e.g. [1], [2], [4]).

Theorem 2 (I sotropic version) Let M be the midpoint of
—
a chord PQ of the parabolic circle, through which two
— — — —
o_trJer Ch(ﬂj)s AB and CD aredrawn; AD cuts PQ at X and
=
BC cutsPQ at Y. M is also the midpoint of XY .

Proof 1
The point coordinates are: P(p1,p2), Q(di,02),

M (mg,mp), X (X1,%2), Y (y1,Y2), with p; # gy, sincePQ

The proofis givenin [3, p. 28].

Lemma 3 Let k be a parabalic circle in |2, a point P €
lo, P¢ Kk and S, S two points of intersection of a no
isotropic straight line g through P with k. The product
f(P):=d(P,S)-d(P,S) doesn't depend of the line g, but
only of k and P.

The proofis givenin [3, p. 38].

Let's now continue the proof of the isotropic Butterfly
theorem.

is a chord and as a such a no isotropic line, wherefrom WeAccording to lemma 1,

derive thatx; # y1 # my must be fulfilled as well. Let us
drop perpendiculark;, hy from X, andgi, g2 fromY on
AB andCD. Let’s also denote

d(PM)=d(M,Q) =g,

4
dOGM) =[x, d(M,Y) =1y, “)
Hi =hiNAM, Hy=h,NDM, (5)
Gi=giNMB, Gy=gaNMC.

A
Yy F
= S5 v T

Fig. 6: The Isotropic butterfly theorem in the affine model
As first we need the following:

Lemmal Let P, Q, P # Q, be two points on a parabolic
circlek, and A #£ P, A £ Q, any other point on the same

circle k. The isotropic angle ¢ = £ (ﬁ&, (j&) does not
depend on the position of point A.

—

— —
oc:é(AB,AD) :a’:é(CB,CD ,

and

ﬁzz(ﬁ,ﬁ):ﬁ/:z(ﬁ,s‘c’) (6)
We will also need

u:l(m,m) :p’:l(\m,M_)B),
and

v:z(m’,W):v’:z(cWi,W). @)

Let's apply furthermore lemma 2 on the following pairs of
allowable triangles:

1st) AAXM & AMBY, 2nd)AXDM & AMYC,

3rd) AAXM & AMYC, 4th) AXDM & AMBY,

marking sides, angles and altitudes as given in figure 7.

v
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1st) AAXM = X m| The solution x| = —ly| = d(X,M)=—d(M,Y) =
A(A_X),m) o u d(Y,M), wherefrom it follows that pointX andY are par-
Ihy = 1al- i allel points, which has been excluded earlier.
So,|x| = = d(X,M)=d(M,Y).O
PRV /R () X =yl (X,M) = d (M.Y)
/(BY,YM) M B Broof 2
Iyl = [bl - i oo N .
Let's use the notation given in (4), that ig,(P,M) =
lhy _ |a] , , d(M,Q) =|s|,d(X,M) =[x, d(M,Y) = ly|, as well as (6)
- lhy| — |b|’ and using marks from fig. 6 we get and (7) for the observed angles.
X h
X _ Il ® .
vl o Fl v
ond) AxpM — —___ldi_|m
Z(Mx,xp) B v
lhy[ =[m[-B=I[d[-v; A .
AMYC = vl _lel_ Jml
/(MY,YC) o v’
[yl = |- o= c]- v;
= % = % and using marks from fig. 6 we have
y
I _ Irel © v :
vl [ge|

Analogously, for the third pair of triangles we get From lemma 3, as shown in (12), we have

lha _ d(AX) (10) d(X,A)-d(X,D) =d(X,P)-d(X,Q),
92| d(Y,C)
Finally, for the fourth pair of triangles we have d(X,P)-d(X,Q) =~ (Is| = X)) (Is|+[x])=[x*~|s?.
(13)
lho| _d(X,D) (11) . .
loi]  d(B)Y)’ Lemma.2 applied on the allowable trianglaP®MX and
AAXM yields
From (4), (8), (9), (10), (11), and lemma 3 one computes ADMX = d()i, D) _ ?E[i, l\_/lz_) _ d(l\g,x)
ME Il el bl el 2(wx.x0)
> loal 192l g2l ol
d(v.C) d(BY) —d(V,C)-d(V.B) M a4
_d(X,P)-d(X,Q _ (p1—x1)(G—X1)
TAdY.P)dY.Q  (pi— v
(Y,P)-d(Y,Q  (P1—Y1)(d1—V1) AAM o GAX) _dX M) d(M.A)
_(Pi—mtm—x) (Mt M—x) H * 4<A>? XI\/T)
(PL—my+my —y1) (qr — My +my — Y1) ,
—(Is = X) (s[+[x) _ [s*=x?
= = . 12
—(Is+ ) (sl— 1y ~ (52— |y (12) L dAX) _ dXM) (15)

X Is?— X

= XZ=1y? = X ==yl
yi? Is? -y
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Lemma 4 The sum of the directed sides of an allowable
trianglein |, equals zero; the sum of the directed angles of
an allowabletrianglein I, equals zero as well.

The proofis givenin [3, p. 22].

For the allowable triangl& ADM, from lemma 4,

v+u+oa+B=0 = PB=—(v+p+to). (16)
Using (13)-(16) together, we obtain

d(x,A)-d(x,D):—d(x,M)-g-d(M,X)%:
_1yl2 VH N Y
Sl S
= |x? (1+V7u) =|s?

o(v+p+o)

2
L 2 80t a7

vt o (vt o)

Following the same procedure ((13)-(16)) for the segment
ly| =d(M,Y), due to the symmetry in andp in the latter
expression, we'll get exactly same result. $¢? = |y|2,
thatis |x| = £ |y|, and following the conclusion from proof
Lix=ly =dX,M)=d(M,Y).O

Proof 3
The proofis based on the following:

Lemma5 Ifintwo allowabletrianglesin I, a directed an-
gle of oneisequal to a directed angle of the other, then the
areas of the triangles are in the same ratio as the products
of the sides composing the equal angles.

Proof According [3, p. 26] the isotropic area of an allow-
able triangleABC, A(ag,a2), B(b1,bz), andC(c1,cz) is
given by

1
ap
ap

1
by
b

1
C1

Fagc = =
2 CZ

/

. — —
Lemma 1 vyields thato 4(MA,AX>

/ (W:,CT/I)) hence, we have to proof the equality:

o

Faxm _ d(MvA) d(A,X)

FMYC - d(YaC) d(CaM) .

(18)

v

Fig. 9

For the pointsA(as,az), C(c1,C2), M (my,mp), X (X1,X2)
andY (y1,y2), the isotropic areas of the triangles are given
by

1 1 1 1
Faxm = > a X1 g |,
a X2 My
and
1 1 1
Fvyc = > m y1 G
m Yy C

The sides composing the equal angles di®,A) =
(alfml), d(A,X) = (lea]_), d(Y,C) = (ley]_), and
d(C,M) = (my — c1). For the directed anglesando’ we
have

azg(m,ﬁ)zxz‘az_afmz
X1—a1 a—Mm
a/zz(v?:,c—m’):mz 2_Q7Y2

Mm—C Ci—W1

Xp—d P—Mp Mp—C C—V
X1—a @a—-Mm m—-C Ci—Y1
XMy —XoMy — ayp + @M +a1Xo — axXy
Y1C2 — Y2C1 — MiC2 + MpC1 + Miy2 — Mpys
Xy — X1M +Mmag — a%

M1C1 — My1 +C1y1 — C% .

o=0 =

Let's mark the directed angles as given before in (6) and The latter equation can be reach writing extensively equa-
(7) (see figure 6), and let's observe the allowable trianglestion (18).

AXM andMYC (figure 9).
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Let’'s apply now lemma 5 on the following pairs of allow-
able triangles:

AMAX andAYCM =

(19)

Frem d(ch)d(CvM),
ACMY andADMX =
Fouv _ d(C.M)-d(M.Y) 0
Fomx d(D,M)-d(M,X)’
AXDM andAMBY =
Fuey d(M,B)-d(B,Y)’
AYMB andAXMA =
Fxma d(X7M)d<MaA)

Fvax Femy Fxom Fyms

(19>'(20).(21>'(22):FYCM Fomx  Fwvey FXMA71
d(AX)-d(M.Y) d(X.D)-d(Y.M)
7 AY,0)-dM.X) d(B.Y)-d(X,M)
d(AX)-d(X,D) d(M,X)-d(X,M)
~ 4BY)dY.C) _damydym) @

According lemma 3, and using the notation given in (4),

we have
d(AX)-d(X,D)=d(PX)-d(X,Q) =s*~ |x?, (24)
and
d(B.Y)-d(Y.C)=d(PY)-d(Y.Q) = s*~[y]*. (25)
Inserting (24) and (25) in (23) we obtain

2

2 2
S I b 2_ 12
=——z = X =W = X==%lyl,

— 1yl

and finally, as it has been shown before,

2 2=
s = Iyl

X =1yl = d(X,M)=d(M,Y).0

Proof 4
Letk be a parabolic circle itp, and letM be the midpoint

Fig. 10

Let A(ai,Ra?), B(bi,Rb?),A # B = a # by, and
C(c1,Ref), D (d1,Rd?), C# D = c; # dy, be four points
on the parabolic circle. ChoosingM (0,m), for the chord
l5(3 we havel5(3 =y=m. Besides, foAB being a chord
throughM, the following relations are obtained:

M, A, B collinear points=
1

1
1

0 m
a Ra?
by Rb?

(26)

:0<:>a1b1:—g.

Analogously, foICD being a chord through, we have:
M, C, D collinear points=

0O m 1 m
et RZ 1 |=0&cd= =t (27)
di Rdjz_ 1

Let's denote further oiX (x;, m) andyY (yz,m).
One obtains the following:
A, D, X collinear points=

=

X1 m
a RaZ 1
di Rd?

=0 Ry (a1+d1) =m+ Razd;.

=

(28)
C, B, Y collinear points=
yr m

by RO?
a1 R

=0« Ryp (b1 +c1) = m+Rbics.

B e

(29)

of the chordP_Q> of k. Let's choose the coordinate system

as shown (in the affine model) in figure 10, i.e, the tange

on the circlek parallel to the chorcﬂgé as thex-axis, and
the isotropic straight line throug¥l as they-axis.

34

nt



KoG-8—-2004

J. Beban-Brig; V. Volenec: Butterflies in the Isotropic Plane

Finally, using (26), (27), (28), and (29) it follows:

Xt yr — m-+ Rapdq . m+Rbi;c;
L R(az+d1)  R(bi+cp)

_ (m+Raydy) (by +c1) + (m+Rbycy) (a3 +dp)
R(a+d1) (b1 +c1)

_ R(agbyd; +ascyds +agbycy +bycydy) +m(ag +by +cq +dyp)

R(ag +dp) (b1 +cp)

R(-dh— Bau

RC1— gb1) +m(ag+by+c1+dp) 0
R(ag +dy) (by+¢1)

= M is the midpoint oiXY. [J

(2]

3]

[4]

[5]
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