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ABSTRACT

A real affine plane A2 is called an isotropic plane I2, if in

A2 a metric is induced by an absolute { f ,F}, consisting of

the line at infinity f of A2 and a point F ∈ f . In this paper

the well-known Butterfly theorem has been adapted for the

isotropic plane. For the theorem that we will further-on

call an Isotropic butterfly theorem, four proofs are given.
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Leptiri u izotropnoj ravnini

SAŽETAK

Realna afina ravnina A2 se naziva izotropnom ravninom I2
ako je metrika u A2 inducirana apsolutnom figurom { f ,F},
koja se sastoji od neizmjerno dalekog pravca f ravnine A2
i točke F ∈ f . U ovom je radu poznati Leptirov teorem

smješten u izotropnu ravninu. Za taj teorem, kojeg od

sada nazivamo Izotropnim leptirovim teoremom, dana su

četiri dokaza.

Ključne riječi: izotropna ravnina, leptirov teorem

1 Isotropic Plane

Let P2(R) be a real projective plane,f a real line inP2, and
A2 = P2\ f the associated affine plane. Theisotropic plane
I2(R) is a real affine planeA2 where the metric is intro-
duced with a real linef ⊂ P2 and a real pointF incidental
with it. The ordered pair{ f ,F}, F ∈ f is calledabsolute
figure of the isotropic planeI2(R) ([3], [5]). In the affine
model, where

x = x1/x0, y = x2/x0, (1)

the absolute figure is determined by theabsolute line f ≡
x0 = 0, and theabsolute point F (0:0:1). All projective
transformations that are keeping the absolute figure fixed
form a 5-parametric group

G5

{
x̄ = c1 + c4x
ȳ = c2 + c3x + c5y

,
c1,c2,c3,c4,c5 ∈ R

& c4c5 �= 0.
(2)

We call it the group of similarities of isotropic plane.

Defining in I2 the usual metric quantities such as the dis-
tance between two points, the angle between two lines etc.,
we look for the subgroup ofG5 for those quantities to be
invariant. In such a way one obtains the fundamental group
of transformations that are the mappings of the form:

G3

{
x̄ = c1 + x
ȳ = c2 + c3x + y

. (3)

It is called the motion group of isotropic plane. Hence,
the group of isotropic motions consists of translations and
rotations, that is

{
x̄ = c1 + x
ȳ = c2 + y

and

{
x̄ = x
ȳ = c3x + y

.

In the affine model, rotation is understood as stretching
along the y-axis.

2 Terms of Elementary Geometry within I2

We will first define some terms and point out some proper-
ties of triangles and circles inI2 that are going to be used
further on. The geometry ofI2 could be seen for example
in Sachs [3], or Strubecker [5].

Isotropic straight line, parallel points, isotropic distance,
isotropic span
All straight lines through the pointF are calledisotropic
straight lines (isotropic lines). All the other straight
lines are simply calledstraight lines. Two pointsA, B
(A �= B) are calledparallel if they are incidental with
the same isotropic line. For two no parallel points
A(a1,a2) , B(b1,b2), the isotropic distance is defined by
d (A,B) := b1 − a1. Note that the isotropic distance is
directed. For two parallel pointsA(a1,a2) , B(b1,b2),
a1 = b1, the quantity known asisotropic spann is defined
by s(A,B) := b2−a2. A straight linep through two points
A andB will be denoted byp ≡ A∨B, or simplyp ≡ AB.
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Invariants of a pair of straight lines
Each no isotropic straight lineg ⊂ I2 can be written in the
normal formy = ux+v, that is, in line coordinates,g(u,v).
For two straight linesg1 (u1,v1), g2(u2,v2) the isotropic
angleis defined byϕ = ∠(g1,g2) := u2−u1 . Note that the
isotropic angle is directed as well. The Euclidean meaning
of the isotropic angle can be understood from the affine
model that is given in figure 1.

Fig. 1

For two parallel straight linesg1 (u1,v1) , g2 (u1,v2) there
exists an isotropic invariant defined byϕ∗ (g1,g2) := v2−
v1 (see fig. 2).

Fig. 2

Isotropic normal
An isotropic normal to the straight lineg(u,v) in the point
P(p1, p2) , P /∈ g is an isotropic line throughP. Inversely
holds as well, i.e. each straight lineg ⊂ I2 is a normal
for each isotropic straight line. Denoting byS the point
of intersection of the isotropic normal in the pointP with
the straight lineg, the isotropic distance of the pointP
from the lineg is given byd (P,g) := s(S,P) = p2− s2 =
p2−up1− v (see fig. 3).

Fig. 3

Fig. 4

Triangles and circles
Under atriangle in I2 an ordered set of three no collinear
points{A,B,C} is understood.A, B, C are calledvertices,
and a := B∨C, b := C ∨ A, c := A∨ B sides of a trian-
gle. A triangle is calledallowable if no one of its sides is
isotropic. In a allowable triangle thelengths of the sides are
defined by|a| := d (B,C), |b| := d (C,A), |c| := d (A,B),
with |a| �= 0, |b| �= 0, |c| �= 0. For the directed angles we
haveα := ∠(b,c) �= 0, β := ∠(c,a) �= 0, γ := ∠(a,b) �= 0
(see figure 4).

Isotropic altitudes ha, hb, hc associated with sidesa, b, and
c are isotropic straight lines passing through the verticesA,
B, C, i.e. normals to the sidesa, b, andc. Their lengths are
defined by|ha| := s(L(A) ,A), whereL(A) = a∩ ha, etc.
The Euclidian meaning is given in figure 5.

Fig. 5

An isotropic circle (parabolic circle) is a regular 2nd or-
der curve inP2(R) which touches the absolute linef in the
absolute pointF. According to the groupG3 of motions
of the isotropic plane there exists inI2 a three paramet-
ric family of isotropic circles, given byy = Rx2 + αx +

β, R �= 0, α,β ∈ R. Using transformations fromG3,
each isotropic circle can be reduced in the normal form
y = Rx2, R �= 0. R is a G3 invariant and it is called the
isotropic radius of the parabolic circle.
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3 The Isotropic Butterfly Theorem

Theorem 1 (Euclidean version) Let M be the midpoint of
a chord PQ of the circle, through which two other chords
AB and CD are drawn; AD cuts PQ at X and BC cuts PQ
at Y . M is also the midpoint of XY .

This theorem has been proved in a series of books and pa-
pers (e.g. [1], [2], [4]).

Theorem 2 (Isotropic version) Let M be the midpoint of
a chord

−→
PQ of the parabolic circle, through which two

other chords
−→
AB and

−→
CD are drawn;

−→
AD cuts

−→
PQ at X and

−→
BC cuts

−→
PQ at Y . M is also the midpoint of

−→
XY .

Proof 1
The point coordinates are: P(p1, p2), Q(q1,q2),
M (m1,m2), X (x1,x2), Y (y1,y2), with p1 �= q1, since

−→
PQ

is a chord and as a such a no isotropic line, wherefrom we
derive thatx1 �= y1 �= m1 must be fulfilled as well. Let us
drop perpendicularsh1, h2 from X , andg1, g2 from Y on
AB andCD. Let’s also denote

d (P,M) = d (M,Q) = |s| ,
d (X ,M) = |x| , d (M,Y ) = |y| ,

(4)

H1 = h1∩AM, H2 = h2∩DM,
G1 = g1∩MB, G2 = g2∩MC.

(5)

Fig. 6: The Isotropic butterfly theorem in the affine model

As first we need the following:

Lemma 1 Let P, Q, P �= Q, be two points on a parabolic
circle k, and A �= P, A �= Q, any other point on the same

circle k. The isotropic angle ϕ = ∠

(−→
PA,

−→
QA

)
does not

depend on the position of point A.

The proof is given in [3, p. 32].

Lemma 2 The relations

|a|
α

=
|b|
β

=
|c|
χ

, |ha| = |c|β, |hb| = |a|χ, |hc| = |b|α

hold for every allowable triangle.

The proof is given in [3, p. 28].

Lemma 3 Let k be a parabolic circle in I2, a point P ∈
I2, P /∈ k, and S1, S2 two points of intersection of a no
isotropic straight line g through P with k. The product
f (P) := d (P,S1) ·d (P,S2) doesn’t depend of the line g, but
only of k and P.

The proof is given in [3, p. 38].

Let’s now continue the proof of the isotropic Butterfly
theorem.
According to lemma 1,

α = ∠

(−→
AB,

−→
AD

)
= α′ = ∠

(−→
CB,

−→
CD

)
,

and

β = ∠

(−→
DA,

−→
DC

)
= β′ = ∠

(−→
BA,

−→
BC

)
. (6)

We will also need

µ = ∠

(−−→
XM,

−→
MA

)
= µ′ = ∠

(−→
YM,

−→
MB

)
,

and

ν = ∠

(−−→
DM,

−−→
MX

)
= ν′ = ∠

(−→
CM,

−→
MY

)
. (7)

Let’s apply furthermore lemma 2 on the following pairs of
allowable triangles:
1st)
AXM & 
MBY , 2nd)
XDM & 
MYC,
3rd)
AXM & 
MYC, 4th)
XDM & 
MBY ,
marking sides, angles and altitudes as given in figure 7.

Fig. 7
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1st) 
AXM ⇒
|x|

∠
(−→
AX ,

−−→
XM

) =
|a|
α

=
|m|

µ
,

|hx| = |a| · µ;


MBY ⇒
|y|

∠
(−→
BY ,

−→
YM

) =
|m′|

µ
=

|b|
β

,

|hy| = |b| · µ;

⇒
|hx|

|hy|
=

|a|
|b|

, and using marks from fig. 6 we get

|x|
|y|

=
|h1|

|g1|
. (8)

2nd) 
XDM ⇒
|x|

∠
(−−→
MX ,

−→
XD

) =
|d|
β

=
|m|

ν
,

|hy| = |m| · β = |d| · ν;


MYC ⇒
|y|

∠
(−→
MY ,

−→
YC

) =
|c|
α

=
|m′|

ν
,

|hy| = |m′| · α = |c| · ν;

⇒
|hx|

|hy|
=

|d|
|c|

, and using marks from fig. 6 we have

|x|
|y|

=
|h2|

|g2|
. (9)

Analogously, for the third pair of triangles we get

|h1|

|g2|
=

d (A,X)

d (Y,C)
. (10)

Finally, for the fourth pair of triangles we have

|h2|

|g1|
=

d (X ,D)

d (B,Y )
. (11)

From (4), (8), (9), (10), (11), and lemma 3 one computes

|x|2

|y|2
=

|h1|

|g1|
·
|h2|

|g2|
=

|h1|

|g2|
·
|h2|

|g1|
=

=
d (A,X)

d (Y,C)
·

d (X ,D)

d (B,Y )
=

−d (X ,A) ·d (X ,D)

−d (Y,C) ·d (Y,B)
=

=
d (X ,P) ·d (X ,Q)

d (Y,P) ·d (Y,Q)
=

(p1− x1)(q1− x1)

(p1− y1)(q1− y1)
=

=
(p1−m1+ m1− x1)(q1−m1 + m1− x1)

(p1−m1+ m1− y1)(q1−m1 + m1− y1)
=

=
−(|s|− |x|) (|s|+ |x|)
−(|s|+ |y|) (|s|− |y|)

=
|s|2−|x|2

|s|2−|y|2
. (12)

|x|2

|y|2
=

|s|2−|x|2

|s|2−|y|2
⇒ |x|2 = |y|2 ⇒ |x| = ±|y|

The solution |x| = −|y| ⇒ d (X ,M) = −d (M,Y ) =
d (Y,M), wherefrom it follows that pointsX andY are par-
allel points, which has been excluded earlier.
So,|x| = |y| ⇒ d (X ,M) = d (M,Y ). �

Proof 2
Let’s use the notation given in (4), that is,d (P,M) =
d (M,Q) = |s|, d (X ,M) = |x|, d (M,Y ) = |y|, as well as (6)
and (7) for the observed angles.

Fig. 8

From lemma 3, as shown in (12), we have

d (X ,A) ·d (X ,D) = d (X ,P) ·d (X ,Q) ,

d (X ,P) ·d (X ,Q) =−(|s|− |x|) (|s|+ |x|) = |x|2−|s|2 .

(13)

Lemma 2 applied on the allowable triangles
DMX and

AXM yields


DMX ⇒
d (X ,D)

ν
=

d (D,M)

∠

(
−−→
MX ,

−−→
XD

) =
d (M,X)

β

⇒
d (X ,D)

ν
=

d (M,X)

β
(14)


AXM ⇒
d (A,X)

µ
=

d (X ,M)

α
=

d (M,A)

∠

(
−−→
AX ,

−−→
XM

)

⇒
d (A,X)

µ
=

d (X ,M)

α
. (15)
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Lemma 4 The sum of the directed sides of an allowable
triangle in I2 equals zero; the sum of the directed angles of
an allowable triangle in I2 equals zero as well.

The proof is given in [3, p. 22].

For the allowable triangle
ADM, from lemma 4,

ν+ µ + α+ β = 0 ⇒ β = −(ν+ µ + α) . (16)

Using (13)-(16) together, we obtain

d (X ,A) ·d (X ,D) = −d (X ,M) ·
µ
α
·d (M,X) ·

ν
β

=

= |x|2
νµ

−α(ν+ µ + α)
= |x|2−|s|2

⇒ |x|2
(

1+
νµ

α(ν+ µ + α)

)
= |s|2

⇒ |x|2 =
|s|2 [α(ν+ µ + α)]

νµ + α(ν+ µ + α)
. (17)

Following the same procedure ((13)-(16)) for the segment
|y| = d (M,Y ), due to the symmetry inν andµ in the latter
expression, we’ll get exactly same result. So,|x|2 = |y|2,
that is |x|=±|y|, and following the conclusion from proof
1, |x| = |y| ⇒ d (X ,M) = d (M,Y ). �

Proof 3

The proof is based on the following:

Lemma 5 If in two allowable triangles in I2 a directed an-
gle of one is equal to a directed angle of the other, then the
areas of the triangles are in the same ratio as the products
of the sides composing the equal angles.

Proof According [3, p. 26] the isotropic area of an allow-
able triangleABC, A(a1,a2), B(b1,b2), andC (c1,c2) is
given by

FABC =
1
2

∣∣∣∣∣∣
1 1 1
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ .

Let’s mark the directed angles as given before in (6) and
(7) (see figure 6), and let’s observe the allowable triangles
AXM andMYC (figure 9).

Lemma 1 yields that α = ∠

(−→
MA,

−→
AX

)
= α′ =

∠

(−→
YC,

−→
CM

)
, hence, we have to proof the equality:

FAXM

FMYC
=

d (M,A) ·d (A,X)

d (Y,C) ·d (C,M)
. (18)

Fig. 9

For the pointsA(a1,a2), C (c1,c2), M (m1,m2), X (x1,x2)
andY (y1,y2), the isotropic areas of the triangles are given
by

FAXM =
1
2

∣∣∣∣∣∣
1 1 1
a1 x1 m1

a2 x2 m2

∣∣∣∣∣∣ ,

and

FMYC =
1
2

∣∣∣∣∣∣
1 1 1

m1 y1 c1

m2 y2 c2

∣∣∣∣∣∣ .

The sides composing the equal angles ared (M,A) =
(a1−m1), d (A,X) = (x1−a1), d (Y,C) = (c1− y1), and
d (C,M) = (m1− c1). For the directed anglesα andα′ we
have

α = ∠

(−→
MA,

−→
AX

)
=

x2−a2

x1−a1
−

a2−m2

a1−m1

α′ = ∠

(−→
YC,

−→
CM

)
=

m2− c2

m1− c1
−

c2− y2

c1− y1

α = α′ ⇒
x2−a2

x1−a1
−

a2−m2

a1−m1
=

m2− c2

m1− c1
−

c2− y2

c1− y1

⇒
x1m2− x2m1−a1m2 + a2m1 + a1x2−a2x1

y1c2− y2c1−m1c2 + m2c1 + m1y2−m2y1
=

=
a1x1− x1m1 + m1a1−a2

1

m1c1−m1y1 + c1y1− c2
1

.

The latter equation can be reach writing extensively equa-
tion (18).�
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Let’s apply now lemma 5 on the following pairs of allow-
able triangles:


MAX and
YCM ⇒

FMAX

FYCM
=

d (M,A) ·d (A,X)

d (Y,C) ·d (C,M)
, (19)


CMY and
DMX ⇒

FCMY

FDMX
=

d (C,M) ·d (M,Y )

d (D,M) ·d (M,X)
, (20)


XDM and
MBY ⇒

FXDM

FMBY
=

d (X ,D) ·d (D,M)

d (M,B) ·d (B,Y )
, (21)


YMB and
XMA ⇒

FYMB

FXMA
=

d (Y,M) ·d (M,B)

d (X ,M) ·d (M,A)
. (22)

(19) · (20) · (21) · (22)=
FMAX

FYCM
·

FCMY

FDMX
·

FXDM

FMBY
·

FYMB

FXMA
= 1

⇒
d (A,X) ·d (M,Y )

d (Y,C) ·d (M,X)
·

d (X ,D) ·d (Y,M)

d (B,Y ) ·d (X ,M)
= 1

⇒
d (A,X) ·d (X ,D)

d (B,Y ) ·d (Y,C)
=

d (M,X) ·d (X ,M)

d (M,Y ) ·d (Y,M)
. (23)

According lemma 3, and using the notation given in (4),
we have

d (A,X) ·d (X ,D) = d (P,X) ·d (X ,Q) = |s|2−|x|2 , (24)

and

d (B,Y ) ·d (Y,C) = d (P,Y ) ·d (Y,Q) = |s|2−|y|2 . (25)

Inserting (24) and (25) in (23) we obtain

|s|2−|x|2

|s|2−|y|2
=

−|x|2

−|y|2
⇒ |x|2 = |y|2 ⇒ |x| = ±|y| ,

and finally, as it has been shown before,

|x| = |y| ⇒ d (X ,M) = d (M,Y ) .�

Proof 4
Let k be a parabolic circle inI2, and letM be the midpoint
of the chord

−→
PQ of k. Let’s choose the coordinate system

as shown (in the affine model) in figure 10, i.e, the tangent
on the circlek parallel to the chord

−→
PQ as thex-axis, and

the isotropic straight line throughM as they-axis.

Fig. 10

Let A
(
a1,Ra2

1

)
, B

(
b1,Rb2

1

)
,A �= B ⇒ a1 �= b1, and

C
(
c1,Rc2

1

)
, D

(
d1,Rd2

1

)
, C �= D ⇒ c1 �= d1, be four points

on the parabolic circlek. ChoosingM (0,m), for the chord
−→
PQ we have

−→
PQ ≡ y = m. Besides, for

−→
AB being a chord

throughM, the following relations are obtained:

M, A, B collinear points⇔
∣∣∣∣∣∣

0 m 1
a1 Ra2

1 1
b1 Rb2

1 1

∣∣∣∣∣∣ = 0⇔ a1b1 = −
m
R

. (26)

Analogously, for
−→
CD being a chord throughM, we have:

M, C, D collinear points⇔
∣∣∣∣∣∣

0 m 1
c1 Rc2

1 1
d1 Rd2

1 1

∣∣∣∣∣∣ = 0⇔ c1d1 = −
m
R

. (27)

Let’s denote further onX (x1,m) andY (y1,m).

One obtains the following:

A, D, X collinear points⇔

∣∣∣∣∣∣
x1 m 1
a1 Ra2

1 1
d1 Rd2

1 1

∣∣∣∣∣∣ = 0⇔ Rx1(a1+ d1) = m+ Ra1d1.

(28)

C, B, Y collinear points⇔

∣∣∣∣∣∣
y1 m 1
b1 Rb2

1 1
c1 Rc2

1 1

∣∣∣∣∣∣ = 0⇔ Ry1 (b1 + c1) = m+ Rb1c1.

(29)
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Finally, using (26), (27), (28), and (29) it follows:

x1 +y1 =
m+Ra1d1

R(a1 +d1)
+

m+Rb1c1

R(b1 +c1)
=

=
(m+Ra1d1)(b1 +c1)+(m+Rb1c1)(a1 +d1)

R(a1 +d1) (b1 +c1)
=

=
R(a1b1d1 +a1c1d1 +a1b1c1 +b1c1d1)+m(a1 +b1 +c1 +d1)

R(a1 +d1) (b1 +c1)
=

=
R

(
−m

R d1−
m
R a1−

m
R c1−

m
R b1

)
+m(a1 +b1 +c1 +d1)

R(a1 +d1) (b1 +c1)
= 0

⇒ M is the midpoint of
−→
XY . �
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